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In this paper we study two-dimensional Ising spin glasses on a grid with nearest 
neighbor and periodic boundary interactions, based on a Gaussian bond dis- 
tribution, and an exterior magnetic field. We show how using a technique called 
branch and cut, the exact ground states of grids of sizes up to 100 x 100 can be 
determined in a moderate amount of computation time, and we report on exten- 
sive computational tests. With our method we produce results based on more 
than 20,000 experiments on the properties of spin glasses whose errors depend 
only on the assumptions on the model and not on the computational process. 
This feature is a clear advantage of the method over other, more popular ways 
to compute the ground state, like Monte Carlo simulation including simulated 
annealing, evolutionary, and genetic algorithms, that provide only approximate 
ground states with a degree of accuracy that cannot be determined a priorL Our 
ground-state energy estimation at zero field is -1.317. 
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1. I N T R O D U C T I O N  

Find ing  the  g round - s t a t e  p roper t i es  o f  Is ing spin glasses is an  i m p o r t a n t  

p r o b l e m  in physics. The  Is ing m o d e l  is one  o f  the  m o s t  c o m m o n l y  used,  
b o t h  for its s impl ic i ty  a n d  its accu racy  in represen t ing  real  p rob lems .  

T h e  conf igu ra t ions  tha t  a re  mos t ly  cons ide red  in the  l i t e ra ture  are  the 

two-d imens iona l  Is ing spin glasses on  a gr id  wi th  nea re s t -ne ighbo r  and  
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periodic boundary interactions and an exterior magnetic field. The periodic 
boundary conditions are a standard way of approximating an infinite planar 
spin glass with a structure that contains only a finite number of spins. 

Unfortunately, there are no partition functions in closed form that, 
given all interactions between the spins and the exterior field, yield a ground 
state. Therefore, the only way to compute a ground state is by using a 
numerical algorithm. Since the total number of states for a structure with 
n spins is 2 n, as soon as n exceeds 30-35, it is impossible, from a 
computational point of view, to find a ground state by brute force, i.e., by 
enumerating all possible states and computing the energy for each of them. 

A fundamental question from both a practical and a theoretical point 
of view in computational mathematics is to determine whether it is possible 
to design an algorithm that, for any possible choice of the spin interactions 
and of the magnetic field, finds a ground state in a number of elementary 
operations bounded by a polynomial function of n, or, more precisely, of 
the number of bits needed to store the problem data. A problem for which 
this is possible is called polynomially solvable and the procedure used is 
called a polynomial algorithm. 

The theory of computational complexity has given quite negative 
results for the possibility of solving the Ising spin glass with periodic 
boundary conditions with a polynomial algorithm. The only case for which 
a polynomial algorithm has been found is for the _ J  model with no 
magnetic field. (3) For the Gaussian case the question is still open, while as 
soon as we have an exterior field, the problem becomes Jtr~-hard for all 
kinds of spin interactions. When a problem is proved ~r~-hard ,  it is 
generally considered as notoriously hard, and it is believed that there can 
be no polynomial algorithm for its solution. 

Due to the difficulty of the problem, the most popular methods 
described in the literature compute an approximation of the value of the 
minimum energy of the spin glass. Such methods usually use Monte Carlo 
simulation including simulated annealing, t14'2~ evolutionary, (22~ and 
genetic algorithms, tl2~ Two of the main drawbacks of these heuristic 
methods are: 

1. It is not possible to estimate how far the produced solution, when 
the algorithm stops, is away from a real ground state. Therefore it is not 
possible to determine reliably the degree of accuracy of the experimental 
results produced with these methods. For example, if we want to compute 
the expected ground-state energy as a function of the grid size using 
heuristic methods, the values will always have a positive bias, no matter 
how large the grid size is, how many experiments are made, and how much 
computation time is invested. 
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2. Two different states with almost the same energy may be com- 
pletely different. Therefore, the state produced by one of these algorithms 
cannot yield any useful information on the structure of the ground state; 
consequently, these methods are completely inadequate when real ground 
states have to been analyzed as, e.g., in protein folding, as was observed in 
ref. 17. 

Only few authors have reported on computational results for methods 
that compute exact ground states. The polynomially solvable case of planar 
grids with no periodic boundary conditions and no magnetic field is treated 
in, e.g., refs. 1, 7, and 8; instances for which no polynomial algorithm is 
known are treated in, e.g., refs. 5, 11, and 18. The most recent results for 
planar grids with periodic boundary conditions and exterior magnetic field, 
in which the interactions are taken from a Gaussian distribution--the case 
we want to concentrate on in this study--are given by Barahona, (4) in 
which he uses a "primal" cutting plane algorithm in order to study the 
ground-state magnetization as a function of the magnetic field, a task that 
requires an exact algorithm due to consideration 2 above. The described 
implementation can handle grids with sizes up to 35 x 35, for which the 
computation took about 14hr on an IBM RISC6000 workstation. 
Barahona (4) states, "we do not have a good bound for the amount of time 
that it would take for the worst possible instance. Also, we do not expect 
to be able to handle considerably larger grids, on this type of workstation." 
Nevertheless, polyhedral approaches, a "primal" one, as used in this 
reference, and a "dual" one, as described previously in refs. 5 and 11, have 
given the most promising results. 

A more sophisticated implementation of the "dual" method described 
in refs. 5 and 11 (which we would prefer to call "primal/dual" for reasons 
which go beyond this exposition), with an additional enumerative frame, 
on a comparable workstation, enabled us to handle 100 x 100 grids in 
moderate computation times. Therefore, we can give computational results 
based on more than 20,000 samples. However, we agree that it is hard to 
predict the running time, as our computational study will indicate below. 
Indeed we can solve single instances of much bigger size, say 150 x 150, but 
the variance in running time for different instances is so high that we 
cannot run such sizes routinely. 

2. G R O U N D  S T A T E S  A N D  M A X I M U M  C U T S  

Finding the ground state of a spin glass is a problem very much 
related to a well-known problem in combinatorial optimization: the maxi- 
mum cut problem in a weighted graph (max-cut problem for short). 
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The max-cut problem is the following. We are given a graph 
G = ( V , E )  with weights cg~R for all edges / jeE.  For each (possibly 
empty) subset W of the node set V, the cut fi(W) of G is the set of all its 
edges with one endpoint in W and the other in V\ W := { i ~ V I i r IV}. The 
weight of a cut is given by the sum of the weights of all its edges. The 
max-cut problem is to find a cut of G with maximum weight. 

Assume that we have a spin glass with n spins S~, $2 ..... S, and a 
uniform exterior magnetic field S O with strength h. We set V= {0, 1 ..... n} 
and consider V as the node set of a graph G = ( V, E), the interaction graph 
associated with the system. For a pair i, j of nodes, G contains an edge/ j  
if the interaction Jo" between two magnetic impurities (or between the field 
and one impurity) is nonzero. For symmetry reasons the "ghost spin" 
variable So corresponding to the field may be fixed, say to So = + 1. Given 
a spin configuration co, and setting Joj = h for j e { 1, 2 ..... n} the value of 
the energy is 

H(o)) ~ - -  Z Ji jSiSj  
O'~E 

Observe that each spin configuration co induces a partition of the node set 
V of the interaction graph G into node sets V + and V-,  where 
V+: ={i~VISi= +1} and V - = { i e V [ S , = - I } .  So the energy of the 
spin configuration co can be translated to the form 

H ( C O ) = - 2  ~ c/ j --C 
O'~(v +) 

where cij := - Ju for all /j e E and C := Za~ e J,y. Hence, the problem of 
minimizing H is equivalent to maximizing 

c(~(v +)):= y~ % 
~ y ~ (  v + ) 

over all V + _~ V. 
This problem is a weighted max-cut problem in the interaction graph 

G associated with the spin-glass system. Thus, finding a ground state in the 
Ising model of a spin glass is equivalent to finding an optimum solution of 
the corresponding max-cut problem. The standard two-dimensional grid 
model with nearest-neighbor interactions, no periodic boundary condi- 
tions, and no magnetic field leads to the problem of solving a max-cut 
problem in a planar graph. 

For planar graphs, Orlova and Dorfman (19) and Hadlock (13) found a 
polynomial time algorithm. The two-dimensional grid model with periodic 
boundary conditions leads to the max-cut problem for the interaction 
graph G, which is embeddable on the toroidal sphere. For all toroidal 
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interaction graphs, provided interactions have value _+J and there is no 
field, Barahona found a polynomial-time algorithm. (2~ But for practical 
purposes this algorithm is not useful since the running time is proportional 
to IV[ 7. In the Gaussian model with zero field, no polynomial-time algo- 
rithm is known, and it is not clear if one exists. However, Barahona 
showed that for the two-dimensional grid model with nearest-neighbor 
interactions and a magnetic field the problem is ~r~-hard ,  even if there are 
no periodic boundary conditions. ~3~ Computational studies for this case 
have been carried out in ref. 21. 

3. B R A N C H  A N D  C U T  

We will first describe the theoretical background of our method. It is 
based on ideas of polyhedral combinatorics. Suppose a graph G = (V, E) 
with edge weights c o. for / j  ~ E is given. We associate with G the real vector 
space R ~, where the components of the vectors are indexed by the elements 
of E. For each cut ~(W), W___ V, we define its incidence vector X6("~ R ~ 
by setting "~(~ 1 i fe~f i (W) and X ~ n ~  if er This yields a 1-1 
correspondence between the cuts of G and their { 0, I } incidence vectors in 
R E. The cut-polytope Pc(G) of G is the convex hull of all incidence vectors 
of cuts of G, i.e., 

Pc(G) = conv{x ~l~ E R g I W__ V} 

The problem of finding a cut fi(W) in G with Z,~61w~cu as large as 
possible can be written as the linear program max{ or x Ix ~ Pc(G)}, since 
the vertices of the polytope Pc(G) are exactly the incidence vectors of the 
cuts of G, and vice versa. In order to apply linear programming techniques 
to solve this linear program, one has to represent Pc(G) as the solution set 
of an inequality system. Since the max-cut problem is JVg~-hard, one can- 
not expect to find a complete system describing Pc(G). But also partial 
systems turned out to be useful for solving max-cut problem instances. The 
facet structure of Pc(G) for general graphs has been studied by several 
authors. Large classes of facet-defining inequalities are known (see, e.g., the 
survey in ref. 16). 

The separation problem consists in identifying one or more of the 
inequalities which are valid for all points in Pc(G), yet are violated by a 
given point s e R E, or reporting that no such point exists. 

The idea underlying our cutting plane approach is the following. We 
choose a system S of linear inequalities whose solution set P contains 
Pc(G) and for which the separation problem can be solved in polynomial 
time. Moreover, S must have the property that Pc(G)= conv{x E P Ix is 
integral} = conv{x I x satisfies all inequalities in S and x is integral}. Our 
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aim is to solve max{crx I x~P} .  If the optimum solution over P is 
integral, it is the incidence vector of a cut and we are done. 

In our case, the system S is given by the trivial inequalities 

O<~x,<~ 1 

for all e e E and the cycle inequalities 

x(F) - x( f \ F )  <<. I r l -  1 

for all cycles C _  E and F~_ C, IFI odd. These inequalities are derived from 
the fact that any cycle must intersect any cut in an even number of edges. 
If C is a chordless cycle, the corresponding inequality is facet-defining for 
Pc(G), i.e., necessary in a nonredundant linear description of Pc(G). There 
is a polynomial-time algorithm for the separation of cycle inequalities that 
is based on shortest-path computationsJ 6) 

The system S is very large and it is impossible to write down all 
inequalities in polynomial time. First, we choose only cycle inequalities 
induced by the faces of the embedded grid graph in our separation routine. 
If we do not find any more violated inequalities of that type, we separate 
by inequalities induced by the triangles involving the node 0 corresponding 
to the magnetic field. Then, we try to identify cycle inequalities on more 
than four edges by fast heuristics, and if these fail, by the exact separation 
algorithm of ref. 6. 

Due to our insufficient knowledge of the inequalities that are necessary 
to describe Pc(G) completely and the fact that we do not have good 
algorithms for the identification of certain further classes of known facet- 
defining inequalities (the system S only defines a proper relaxation of the 
max-cut problem), we may end up with a nonintegral solution 2. In 
this case, we branch on some fractional variable xe (i.e., a variable with 
"~e ~ {0, 1 } ), creating two subproblems in one of which x e is set to 0 and 
in the other xe is set to 1. Then we apply the cutting plane algorithm 
recursively for both subproblems. This type of method is called branch 
and cut. 

An interesting point in our computational experiments is that, in 
most cases, the cycle inequalities turn out to be sufficient for solving the 
max-cut problems without branching, although we know that there are 
facet-defining inequalities that our algorithm does not identify. In fact, our 
implementation does contain simple heuristics for identifying further 
facet-defining inequalities whenever we cannot identify any more cycle 
inequalities. 
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4. C O M P U T A T I O N A L  EXPERIMENTS 

Our computational experiments were carried out on a SUN 
SPARCstation 10 and a DEC Alpha/OSF1. The complete computer code, 
except the linear programming routines, was written by us; to solve the 
linear programs we used the CPLEX Callable Library/l~ 

As a first experiment, we considered toroidal L x L grids with L up to 
100, in which the interactions J,~ were chosen according to a Gaussian dis- 
tribution with mean 0 and standard deviation 1, at zero field. For each L 
between 5 and 50, we did [-105/L27 runs, i.e., a total of 20,174 ground-state 
computations. These experiments were run on a SPARCstation 10 and 
each of them took less than 15 min of CPU time. For L = 60, 70, 80, 90, 
100, we did 20 experiments each. These experiments were run on a DEC 
Alpha/OSFI. Solving the 100 x 100 instances took between 1.5 and 8 hr, 
4 hr on average. In Fig. I we show the ground-state energy versus the grid 
size. For each value of L we show the average, the minimum, and the maxi- 
mum ground-state energy, taken over all samples of that size. In addition, 
for L --- 20, 30,..., 100 a vertical bar represents the interval/z _+ 3a, where p 
and a denote the average and the standard deviation, respectively. 

It is an interesting question how the average ground-state energy 
depends on the grid size (at zero magnetic field). If  one can extrapolate 
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Fig. 1. Ground-s ta te  energy versus grid size. 
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Fig. 2. Development  of magnet iza t ion  and energy with increasing field. 

important information (e.g., the ground-state energy) from small sizes to 
bigger ones, we have a fast tool for finding such information. With Fig. 1 
we try to address this issue. 

The ground-state energy values for the small grids show a very high 
variance. We expected this behavior because of the great influence of ran- 
domness in small systems. We fit the data with a log[E(L)- -Eo]  oc - -L  
curve, where L is the grid size, taking into account the average ground- 
state energy values for L = 20, 30 ..... 100. This fit suggests a ground-state 
energy of Eo = -1 .3177 ___0.0014. The grid sizes we can handle efficiently 
lie already in the asymptotic part of the fitting curve. We also fit the data 
with a constant value and we got the estimate Eo = -1.3168__0.0004. 
Both fits are consistent with but more accurate than the estimate of 
E0= --1.31 +0.01 we found in ref. 9. 

The curves given in Fig. 2 show the ground-state energy and the 
ground-state magnetization as a function of the exterior magnetic field 
varying between 0 and 4 by 0.2. Using a similar technique as in refs. 5 and 
11, we can save a lot of time by solving such a sequence of instances in 
which only the field changes, instead of solving each instance from scratch. 
Taken alone, instances with high field are much easier for our algorithm 
than those with small field. For each value of the field, we ran ten 50 • 50 
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Fig. 3. Verifying a power law for the magnetization. 

instances. Figure 2 shows the averages for ground-state energy and 
magnetization values. 

Finally, we would like to repeat the experiment by Barahona, (4) 
namely estimating the exponent 1/c~ in the expression re(F) oc F ]/~, for the 
magnetization m and the field F. Doing the same kind of computation 
based on ten 50 x 50 grids for 20 different values of F (instead of grids of 
sizes 25 x 25, 30 x 30, and 35 x 35, ten instances each, for five different 
values of F), we can give the estimate 1/c~=0.651 +0.004 from the fit 
in Fig. 3, confirming Barahona's estimate of 0.648 +0.038. Barahona's 
estimate was already in disagreement with various other estimates in the 
literature, but it was still compatible with the estimate of 0.678 given in 
ref. 15. Our estimate disagrees also with this one. 

5. FINAL R E M A R K S  

In this paper, we investigated exact ground-state computations for 
Ising spin glasses on two-dimensional grids with nearest-neighbor and 
periodic boundary interactions, based on a Ganssian bond distribution, 
and an exterior magnetic field. Our approach is applicable to any spin- 
glass model in the Edwards-Anderson sense, i.e., any configuration (two- 
or three-dimensional, grids with or without periodic boundary conditions, 
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with  or  w i thou t  magne t i c  field,...) a n d  a n y  in te rac t ion  pa t t e rn  ( shor t - range  
or  long- range  in terac t ions ,  in te rac t ion  values  d r a w n  f rom a G a u s s i a n  
d i s t r ibu t ion ,  or  t aken  as _ J  with r a n d o m  d i s t r ibu t ions  of  a cer ta in  
percentage  of  negat ive  interactions, . . . ) .  P r e l imina ry  c o m p u t a t i o n a l  results 
indicate  that ,  e.g., replac ing " G a u s s i a n "  wi th  " _ J "  tends  to yield ha rde r  
p r o b l e m  ins tances  for o u r  approach .  We p l an  to invest igate  this further.  In  
addi t ion ,  we p l an  to invest igate  th ree -d imens iona l  grids wi th  va r ious  
in te rac t ion  pat terns .  
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